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A B S T R A C T

With increasing automation, drivers’ roles transition from active operators to passive system supervisors,
affecting their behaviour and cognitive processes. This study addresses the attentional resource allocation and
subjective cognitive load during manual, SAE Level 2, and SAE Level 3 driving in a realistic environment.
An experiment was conducted on a test track with 30 participants using a prototype automated vehicle.
While driving, participants were subjected to a passive auditory oddball task and their electroencephalogram
was recorded. The study analysed the amplitude of the P3a event-related potential component elicited by
novel environmental stimuli, an objective measure of attentional resource allocation. The subjective cognitive
load was assessed using the NASA Task Load Index. Results showed no significant difference in subjective
cognitive load between manual and Level 2 driving, but a decrease in subjective cognitive load in Level
3 driving. The P3a amplitude was highest during manual driving, indicating increased attentional resource
allocation to environmental sounds compared to Level 2 and Level 3 driving. This may suggest that during
automated driving, drivers allocate fewer attentional resources to processing environmental information. It
remains unclear whether the decreased processing of environmental stimuli in automated driving is due to
top-down attention control (leading to attention withdrawal) or bottom-up competition for resources induced
by cognitive load. This study provides novel empirical evidence on resource allocation and subjective cognitive
load in automated driving. The findings highlight the importance of managing drivers’ attention and cognitive
load with implications for enhancing automation safety and the design of user interfaces.
1. Introduction

Until fully automated vehicles (AVs) are available, humans remain
involved in operating partially (SAE Level 2; or L2) and conditionally
(SAE Level 3; or L3) AVs (SAE, 2016). Nevertheless, with increasing
automation, the drivers’ roles change from primary operators to sys-
tem supervisors (Bainbridge, 1983). The progressively more passive
role could, however, lead to mental underload (Stapel et al., 2019;
McWilliams and Ward, 2021), passive fatigue (Matthews et al., 2019;
Figalová et al., 2023a), and mind-wandering (Galéra et al., 2012;
Baldwin et al., 2017). The disengagement with the driving task can
result in drivers’ inability to maintain alertness during automated driv-
ing (Vogelpohl et al., 2019). Nevertheless, drivers of L2 and L3 AVs
remain responsible for the vehicle’s safety (SAE, 2016).

∗ Corresponding author.
E-mail address: nikol.figalova@uni-ulm.de (N. Figalová).

To optimize driver–vehicle interaction and ensure traffic safety, we
must design user-centred AV systems (Liu et al., 2023) that cooper-
atively interact with drivers (Pichen et al., 2021) and adapt to their
current state and needs. To design such AV systems, we need to un-
derstand the cognitive processes underlying driver–vehicle interaction
and explore the differences between different levels of automation.
Although this topic had been previously addressed by the scientific
community, most literature reports on data obtained in a driving
simulator using subjective, self-report measures only. However, other
researchers report discrepancies in a simulator and real-world findings
when it comes to, for example, speed of driving (Zöller et al., 2019),
eye fixations (Fors et al., 2013), heart rate (Johnson et al., 2011),
or mental workload (Mueller, 2015) (for a review, see Wynne et al.,
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2019). Moreover, other researchers also report discrepancies between
subjective and objective measures of cognitive states (Stapel et al.,
2019, 2017; Large et al., 2017). Additionally, we found no empirical
studies which directly compare different levels of automation.

To address these limitations and contribute to a more comprehen-
sive understanding of the cognitive processes involved in driver–vehicle
interaction during AV operation, this study aimed to compare L2 and
L3 driving with manual driving in a realistic environment using both
objective and subjective measures of cognitive load. Specifically, we
investigated attentional resource allocation and self-reported cognitive
load of drivers who operated SAE L2 and L3 vehicles and compared it
to manual driving. We conducted an empirical test track experiment
using an AV prototype and electroencephalography (EEG) to measure
neural activity. The self-reported cognitive load was assessed using the
NASA Task Load Index (NASA-TLX; Hart and Staveland, 1988), and
attentional resource allocation was quantified using the amplitude of
the P3a event-related potential (ERP) evoked by novel environmental
sounds (Baldwin et al., 2017).

To our best knowledge, this is the first attempt to compare L2 and
L3 driving with manual driving in a realistic environment using both
objective and subjective measures of cognitive load. By investigating
the neural mechanisms of drivers’ behaviour during AV operation, our
study provides insights into how the brain processes information during
AV operation and how it differs from manual driving. Ultimately, our
results may help design intelligent user-centred interfaces for future
automated vehicles.

2. Related work

2.1. How vehicle automation changes drivers roles

Manual driving is a complex task that requires drivers to be aware of
stimuli originating from different distances, directions, and sources, as
a critical event can arise from any direction. Visual perception is crucial
for processing important visual information from the environment and
maintaining situational awareness. Auditory perception allows drivers
to be aware of important auditory cues, such as horns or sirens, which
can indicate potential hazards. Safe manual driving requires drivers
to integrate information from multiple sensory modalities to form a
unified perception of the world (Spence and Soto-Faraco, 2020). It also
requires drivers to update their perceptual-motor loop continuously and
remain calibrated to the vehicle dynamics (Mole et al., 2019).

Automated driving, however, places different demands on drivers.
SAE L2 AVs can perform longitudinal and lateral control but require
drivers to continuously supervise the AV system and immediately re-
spond to automation failures. SAE L3 AVs allow drivers to engage in
non-driving-related activities and only respond to requests to inter-
vene once the AV reaches its operational boundary (SAE, 2016). As
automation increases, the vehicle performs more active tasks, such as
steering and navigating complex traffic situations, with drivers pri-
marily serving a supervisory role. This shift in the role could disrupt
the perceptual-motor loop (Mole et al., 2019) and decrease situational
awareness (Merat and Jamson, 2009b).

The role of drivers changes with increasing automation, which could
lead to drivers being unprepared for the shift in task demands (Bran-
denburg and Skottke, 2014). This change in demands could jeopardize
drivers’ attention (Vogelpohl et al., 2019; Merat et al., 2014) and their
ability to incorporate information from the environment (Galéra et al.,
2012; Scheer et al., 2018).

Many researchers addressed the changing role of the driver and its
implications on how drivers interact with the automated system. Jam-
son et al. (2013) studied the behavioural changes in drivers when
experiencing highly automated driving. They found that drivers became
more involved with in-vehicle entertainment tasks than in manual driv-
ing, impacting how much attention they pay to the environment. Frison
et al. (2019) found that interacting with automated systems might be
2

tedious and unstimulating, which leads to low psychological fulfilment
and an unsatisfied user experience. Biondi et al. (2019) argue for
collaborative human–vehicle interactions, as well as Pichen et al.
(2019, 2023).

To design AV systems that support drivers in their new role, we must
understand their experiences when operating an AV and how those
experiences differ at different levels of automation. This understanding
will help us design user-centred interfaces for automated vehicles that
better support drivers in their new roles.

2.2. Attention, resource allocation, and cognitive load in automated driving

Attention is a fundamental characteristic of all perceptual and cog-
nitive processes (Chun et al., 2011). It can be classified as external
(bottom-up) or internal (top-down). Bottom-up attention is reflexively
triggered by environmental stimuli based on the saliency of a stimu-
lus, whereas top-down attention involves directing attention based on
cognitive goals. Driving scenarios present a dynamic interplay between
bottom-up and top-down attention control (Spence and Soto-Faraco,
2020). An example of bottom-up attention occurs when a red brake
light of a car in front lights up, drawing visual attention and trigger-
ing the driver’s bottom-up attention. This visual stimulus triggers an
automatic, bottom-up attention response.

Conversely, top-down attention control can be seen when the driver
purposefully attends to traffic signs along the road. Their knowl-
edge of the signs’ importance, along with a commitment to driving
safely and according to law, directs their attention towards the traffic
signs amidst various distractions. This proactive, goal-driven behaviour
demonstrates top-down attention control.

The human brain has limited attentional capacity; therefore, infor-
mation must compete for processing resources. Attention is then allo-
cated to the most behaviourally relevant events (Chun et al., 2011). The
saliency of stimuli is the primary mechanism for selection, but it can
be modified via top-down control (Wang and Theeuwes, 2020). Several
areas of the prefrontal and parietal cortex (for a review, see Baluch and
Itti, 2011) are involved in setting up these perceptual filters. The result
is selection biased by cognitive goals, which means drivers can decide
how much of their attention capacity is used for the driving task.

Attention and the allocation of processing resources are closely
related to cognitive load, which refers to the cognitive resources re-
quired to complete a task. When the cognitive load induced by a
task is high, the processing resources are employed to complete the
task. Conversely, during low-demanding tasks, there are enough free
processing resources available. The effect of vehicle automation on
cognitive load has been extensively studied in driving simulators (for an
overview, see De Winter et al., 2014). However, the literature suggests
that the simulated environment is limited in reproducing real traffic
conditions (Groh et al., 2019; Hock et al., 2018) and some authors
report a discrepancy between a simulator and real-world results. For
example, other studies report discrepancies in a simulator and real-
world findings in regards to the speed of driving (Zöller et al., 2019),
eye fixations (Fors et al., 2013), heart rate (Johnson et al., 2011), or
mental workload (Mueller, 2015) (for a review, see Wynne et al., 2019).
Therefore, driving simulator findings might have limited relevance in
the real world.

Few real-world studies addressing cognitive load in automated driv-
ing have been conducted, and the authors report contradictory results.
For example, Biondi et al. (2018) reported a reduction in drivers’
objective cognitive load (indexed by heart rate variability) in L2 driving
compared to manual driving, while McDonnell et al. (2021) found no
change in objective cognitive load (indexed by alpha and theta power)
between manual and L2 driving. Contradicting results were reported
by Kim et al. (2023), who found that L2 drivers experienced higher
self-reported (measured by NASA-TLX) cognitive load in L2 compared
to manual driving. Focusing on L3 driving, Várhelyi et al. (2021)
reported no differences in self-reported cognitive load (measured by



International Journal of Human - Computer Studies 182 (2024) 103169N. Figalová et al.
a raw task-load index Byers et al., 1989) between L3 and manual
driving. In contrast, Banks and Stanton (2016) concluded that L3 AV
drivers perceive increased self-reported cognitive load (measured by
NASA-TLX) compared to manual driving. Some authors also report
discrepancies between self-report and objective measures of cognitive
load (Stapel et al., 2019, 2017; Large et al., 2017). These discrepancies,
however, do not necessarily mean contradicting results. De Waard and
Brookhuis (1996) suggest that different approaches to measuring cog-
nitive load are sensitive to different components of cognitive load and
recommends combining measures from different categories (self-report,
performance-based, and physiological measures) to gain a comprehen-
sive understanding of cognitive load. Stapel et al. (2019) suggests that
the discrepancy might occur because drivers tend to underestimate the
actual cognitive load of passive supervision.

Understanding drivers’ attention, how they allocate processing re-
sources, and the cognitive demands of automated driving is crucial
for designing user-centred AV systems. However, many inconsistencies
exist between self-report and objective measures of cognitive load
(observed by, for example, Stapel et al., 2019, 2017 or Large et al.,
2017) and between simulator and real-world findings (observed by,
for example, Fors et al., 2013; Johnson et al., 2011; Mueller, 2015;
for a review, see Wynne et al., 2019). Accumulating more empirical
evidence combining different approaches and methods is necessary for
a comprehensive understanding of the problem and for developing
neuroadaptive interfaces that allow the assessment of drivers’ cognitive
states in real time (Krol et al., 2016). Finally, utilizing real-world stud-
ies over simulator experiments can help improve the factual relevance
of the findings.

2.3. P3a as an objective measure of attentional resource allocation

Event-related potentials (ERPs) offer a noninvasive way to measure
the brain’s electrical activity, thereby providing valuable insights into
cognitive and neural processes (for a comprehensive review, refer
to Ghani et al., 2020 or Luck, 2014). The auditory P3a ERP component
is of particular interest in neuroergonomics. The P3a component is
typically associated with the brain’s attentional response to novel or
unexpected events or stimuli. It can be recorded over the fronto-
central brain area and peaks approximately 300 ms after the onset
of unexpected auditory stimuli. The P3a amplitude is related to the
cognitive evaluation of the relevance of environmental stimuli and can
be considered an index of involuntary attention switching (Escera and
Corral, 2007).

The involuntary attention switching is an information-processing
cascade associated with auditory stimulus categorization and evalua-
tion (Kok, 2001). It occurs in three stages. In the perceptual stage,
identified around 100–150 ms post-stimulus, the brain recognizes the
presence of the stimulus. This stage is characterized by the mismatch
negativity (MMN) and the auditory N1 ERP components. Subsequently,
in the categorization stage, evident around 250–400 ms after intro-
ducing the stimulus, the brain cognitively evaluates the stimulus. This
stage is reflected in the P3a ERP component. Once the distracting
stimulus is categorized as irrelevant, an attention switch occurs. This
switch is reflected by the reorienting negativity component (RON) with
approximately 500–600 ms latency (Escera and Corral, 2007).

The P3a can be elicited by novel auditory stimuli within a pas-
sive oddball task paradigm. An oddball task is a common paradigm
used in psychological research to study the perception, attention, and
processing of stimuli (Polich, 2007).

In an active auditory oddball task, participants are presented with
a sequence of auditory stimuli. The majority of these stimuli are the
same, standard sounds. A small proportion are different, oddball stim-
uli. Traditionally, the participant’s task is to detect the oddball stimuli
and indicate their presence, e.g., by a button press (Parmentier et al.,
2008). In the passive oddball task, participants are presented with three
3

types of stimuli: (1) frequent and (2) infrequent beep tones of distinct
frequencies and (3) rare novel sounds. Contrary to the active oddball
task, participants are instructed not to respond to the stimuli in the
passive oddball task.

The passive oddball task can be presented alongside a primary
task. While performing the primary task, participants are exposed to
the sound presentation of the passive oddball task and their EEG is
recorded. The amplitude of the P3a component elicited by the rare,
novel sounds is influenced by the demands of the primary task (Escera
et al., 1998). A vital factor in this process is the competition for limited
processing resources (Chun et al., 2011). In essence, as the primary
task’s demands increase, the pool of resources available for processing
task-irrelevant auditory cues diminishes. This relationship presents an
inverse correlation between the two (Harmony et al., 2000) — with
fewer resources available to process the cues, the P3a amplitude is
diminished. As a result, the P3a amplitude can be used to quantify the
attentional resources allocated for stimulus processing; and therefore
reflects the cognitive load of the primary task (Kramer et al., 1995;
Sirevaag et al., 1993; Polich, 2007; Figalová et al., 2023b).

However, treating the P3a amplitude as a direct measurement of
the cognitive demands of the primary task might be misleading (Kok,
2001). This direct relationship might be present in cognitively demand-
ing tasks. In such situations, not enough resources are left for the
processing of the task-irrelevant auditory cues. This situation leads to
a competition for cognitive resources (Chun et al., 2011), subsequently
resulting in a decreased P3a amplitude evoked by the task-irrelevant
auditory cues (Polich, 2007). However, in complex situations that
require low to moderate cognitive load (such as driving), the saliency
of the distractors might not be the only mechanism that determines the
amount of processing resources used, and other factors might come into
play. Top-down attention control appears to be one of these factors.

The effect of top-down attention control on the P3a amplitude has
been shown by Cahn and Polich (2009), who presented task-irrelevant
auditory distractors to experienced meditators during meditation. They
found decreased P3a amplitude evoked by the distracting stimuli and
concluded that meditation reduced cognitive reactivity. This finding
suggests the influence of top-down attention control on the processing
of environmental auditory stimuli. This finding might have implications
for neuroergonomic research because it suggests that the P3a amplitude
is influenced not only by cognitive load. Even though meditation and
driving are very different situations, the effect of top-down attention
allocation might be present in both.

The characteristics of the P3a ERP component have been previously
applied in human–computer interaction research. The amplitude of
the P3a has been used to assess the design and usability of auditory
notifications in complex environments such as gaming (Lee et al.,
2014) or in-vehicle warning systems (Huang et al., 2019). Cherng et al.
(2018) used the P3a ERP component to evaluate the impact of acoustic
features of auditory notifications on awareness and attention shifting.
Later, Cherng et al. (2019) also evaluated the influences of musical
parameters on behavioural responses to audio notifications.

Moreover, several researchers studied the P3a amplitude in the
context of cognitive load while driving. Specifically, (1) researchers
compared the P3a amplitudes between stationary and driving condi-
tions (Wester et al., 2008), (2) studied the effect of steering demands
on P3a amplitude (Scheer et al., 2016), (3) and compared the P3a am-
plitude in a stationary condition to manual and automated driving (Van
der Heiden et al., 2018). These studies found that the P3a amplitude
was increased in the stationary condition compared to automated
driving and that the P3a amplitude was reduced in manual driving
compared to automated driving. Furthermore, Van der Heiden et al.
(2021) investigated the effect of cognitive load on the processing of
auditory cues during automated driving and found that the P3a ampli-
tude was reduced when performing a task that induces cognitive load.
These findings suggest that drivers allocate more attentional resources
to process environmental stimuli when operating an automated vehicle

than during manual driving. The results are then interpreted in light of
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limited attentional capacity and resource competition. However, none
of the above-mentioned studies considers top-down attention control
and its importance in tasks inducing lower cognitive load. In such
situations, the competition for the limited pool of processing resources
might not explain the observed changes in the P3a amplitude.

2.4. Research gaps

To design AVs that are safe, efficient, and user-centred, it is crucial
to get a comprehensive understanding of the drivers’ experience when
interacting with such vehicles. We must explore not only the perceived
level (how drivers think they experience AVs) but also the implicit
effects on their cognitive processes. Moreover, we must understand the
differences between different levels of automation and their implica-
tions for AV design. Despite a substantial body of literature addressing
some aspects of this issue, we identified several research gaps that must
be addressed.

Typically, such research is conducted in driving simulators, which
affects the ecological validity of the findings due to the restricted
real-world applicability. Furthermore, there is usually no comparison
between different levels of automation, thus making it difficult to
extrapolate differences in experiences across automation levels. Only
a fraction of studies integrate both objective and subjective measure-
ments of cognitive load. When these measures are combined, sometimes
the results exhibit inconsistencies, indicating a need for further inves-
tigation to enhance our comprehension. Lastly, studies employing the
passive oddball task generally interpret results from the standpoint of
resource competition but tend to overlook the potential significance of
top-down attentional control in situations necessitating low to medium
cognitive load, such as (automated) driving.

In our experiment, we directly addressed these gaps. We conducted
an empirical study within a realistic environment that compares three
distinct levels of automation — manual driving, SAE L2, and SAE L3
driving. To estimate the cognitive load and the resources allocated for
processing novel environmental stimuli, we utilized a combination of
objective and subjective measurements. Finally, in interpreting our re-
sults, we consider that (automated) driving is a relatively low-demand
task, at least in the present experiment. Thus, we have taken into
account the aspect of top-down attentional control when interpreting
our results. The top-down attention allocation has been omitted in
driving studies adopting the passive oddball paradigm, presumably
because all the previous studies originate in a laboratory setting and
report straightforward results explainable by the competition for re-
sources. We argue that this explanation is oversimplistic in a realistic
environment.

Addressing the research gaps we identified in the current literature
is crucial for designing safer and more user-centred AVs. It provides
researchers and user interface designers with a better understanding
of drivers’ experiences, promotes realistic experiments, facilitates com-
parisons across automation levels, integrates objective and subjective
measurements of cognitive load, and acknowledges the importance of
top-down attentional control. Closing these gaps will provide valuable
information for the AV design, shed light on safety concerns connected
to automated driving, improve user experiences inside AVs, and shape
the future of transportation.

3. Research questions and hypotheses

Our study aimed to investigate the impact of increasing vehicle
automation on the cognitive processes of the driver. We focused on
the attentional resources allocated to processing novel environmental
stimuli and perceived cognitive load. We compared SAE L2 and L3
to manual driving using objective and subjective measures to gain an
understanding of the cognitive processes involved in driver–vehicle
interaction and provide insight into the neural mechanisms of drivers’
behaviour. Current legal and technological constraints prevented us
4

from an experimental design employing real traffic conditions. There-
fore, we conducted an empirical test track experiment which provides
high ecological validity yet a safe and controllable environment. We
measured the P3a amplitude using a passive oddball task and self-
reported cognitive load to understand the drivers’ experience when
driving manually and operating an SAE L2 and L3 AV. Our research
questions and hypotheses were:

RQ1: What are the differences in cognitive demand that drivers per-
ceive in L2 and L3 automation compared to manual driving?

RQ2: Do drivers allocate attentional resources for processing environ-
mental stimuli differently in L2 and L3 automation compared to
manual driving?

To statistically test our assumptions, we formulated the following
hypotheses:
Self-reported cognitive load:

H1a: There is no significant difference in self-reported cognitive load
(represented by the overall score of NASA-TLX) between L2 and
manual driving.

H1b: The self-report cognitive load (represented by the overall score
of NASA-TLX) in L3 driving is lower compared to manual driv-
ing.

P3a amplitude:

H2a: There is no significant difference in frontal P3a amplitude be-
tween L2 and manual driving.

H2b: The frontal P3a amplitude is decreased in manual compared to
L3 driving.

4. Methods

4.1. Participants

We recruited a total of 30 participants from the general German
adult population, consisting of 16 females and 14 males, aged between
22 and 64 years (M = 40.36 years; SD = 13.73). Due to technical issues,
data from one participant in one condition were not recorded. All
participants had normal or corrected-to-normal vision and no known
neurological or psychiatric diseases. They held valid German car driv-
ing licences, with an average possession duration of M = 19.58 years
(SD = 13.03).

Most participants were right-handed (80.00%) and owned a car
(93.33%). None of them reported experience with automated vehicles.
The participants’ annual travel distances varied, with 30.00% travelling
up to 10,000 km/year, 26.67% between 10,001 and 15,000 km/year,
23.33% between 15,001 and 20,000 km/year, and 20.00% travelling
more than 20,000 km/year. Regarding car usage frequency, 60.00%
of participants used their car daily, 36.67% at least once a week, and
3.33% at least once a month.

Participants reported diverse highest obtained education, with
16.67% completing high school, 20.00% having vocational training,
53.33% possessing a bachelor’s or master’s degree, and 3.33% obtain-
ing a doctoral degree. The majority of participants (73.33%) were em-
ployed, followed by retirees (10.00%), unemployed individuals
(10.00%), and students (6.67%).

Participants were recruited via an external company specializing
in providing subjects for research purposes. Informed consent was ob-
tained from all participants, who received a financial compensation of
90 EUR for their involvement. The study was conducted in accordance
with the Declaration of Helsinki.
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Fig. 1. (a) The experiment took place on a test track in Renningen, Germany. (b)
The vehicle travelled in loops of approximately 2000 meters on a trajectory visualized
by the red dotted line. In the curves (highlighted by blue), vehicle travelled with 20
km/h. In the straight stretches (highlighted by orange), vehicle travelled with 50 km/h.
Point A = entry to the test track. Point B = starting and ending point of each drive.
Point C = lane departure error during L2 drive occurred here. Note: The scale is not
proportional. (c) The test vehicle was an automated vehicle prototype based on the
VW Golf VII model. (d) Participants wore a 32-channel EEG cap and headphones for
the auditory stimuli presentation. A safety driver was present in the passenger seat.
5

4.2. Apparatus

The experiment was conducted at the Robert Bosch GmbH test track
in Renningen, near Stuttgart, Germany (see Fig. 1a). This test track was
constructed on a landing strip of a former military airport. The vehicle
traversed loops of approximately 2000 m, as visualized in Fig. 1b.

The test vehicle was a VW Golf VII with automatic transmission
provided by Robert Bosch GmbH (see Fig. 1c), equipped with a vehicle-
in-the-loop system enabling GPS-based automated driving along a pre-
defined route on test tracks. The automation function, in conjunction
with the HMI, facilitated the representation of various automation
levels. A safety driver, seated in the passenger seat (see Fig. 1d),
monitored the automation and the environment, intervening in case of
imminent danger. Additionally, the safety driver was responsible for
activating system errors at predetermined points on the test track.

Auditory stimuli were presented using a Fujitsu Lifebook U749
laptop and Sony MDR-1RNC headphones. The stimuli were delivered
via Python 3.6 and the software package PsychoPy v2021.2.3 at 75 dB.
The auditory stimuli were synchronized with the EEG signal using the
Lab Streaming Layer (Boulay, 2023), an open-source system for the
unified collection of measurement time series. Data were recorded with
the LabRecorder, the default recording program of the Lab Streaming
Layer.

Participants completed demographics in a paper–pencil format at
the beginning of the experiment after the informed consent was signed.
The perceived cognitive load was assessed using the NASA Task Load
Index scale (NASA-TLX Hart and Staveland, 1988). The scale comprises
six dimensions: Mental Demand, Physical Demand, Temporal Demand,
Performance, Effort, and Frustration. While Mental Demand is a key
aspect of cognitive load, the other dimensions of the NASA-TLX also
contribute to cognitive load by reflecting the range of demands and
experiences that can impact an individual’s attentional resources (Hart
and Staveland, 1988). Therefore, we calculate the total score of NASA-
TLX by averaging across all the items to gain the overall score of
cognitive load. Moreover, we administered the Karolinska Sleepiness
Scale (KSS Shahid et al., 2011); however, the results are presented
elsewhere (Figalová et al., 2023a).

The NASA-TLX and KSS were administered as questions in UniPark,
an online platform to conduct surveys. Both NASA-TLX and KSS were
administered directly after each condition using Apple iPad Mini 6.

4.3. Experimental conditions and task

Participants experienced three experimental conditions: (1) manual
driving, (2) monitoring an SAE L3 vehicle, and (3) monitoring an SAE
L2 vehicle.

In the manual condition, participants were instructed to maintain
a constant speed of 50 km/h on the straight stretches of the test track
and reduce their speed to 20 km/h when navigating curves.

In the L3 condition, participants were informed that the vehicle
could handle most situations autonomously. However, if a system
boundary was reached, the vehicle would request drivers to take over
control in advance. Participants were advised that at this level of
automation, they could relax and enjoy the ride unless a take-over
request was issued. No error or take-over request occurred during the
L3 condition because our goal was to create a realistic experience of L3
driving, in which errors should not occur often.

In the L2 condition, participants were informed that while the
vehicle would operate in an automated mode, they were required to
constantly supervise the system and intervene in case of a system
failure. A lane departure error was implemented, manually triggered
by the safety driver approximately 7 min into the L2 condition. This
error occurred on a straight section of the test track, causing the vehicle
to drift slowly to the right. Participants needed to notice and correct
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the error for the vehicle to continue the ride. The error was non-
critical with no imminent collision. If the participant failed to notice
the error or chose not to intervene, the safety driver corrected the
error by steering back in the lane, and the vehicle proceeded with the
ride. In total, the error was undetected by 6 participants. In such cases,
participants only experienced the correction of steering from the safety
driver; no explanation or indication to intervene was given as it would
disturb the sound presentation and the EEG recording.

The automation settings for the L2 and L3 conditions were identical,
with the vehicle following the same trajectory and maintaining the
same velocity in both conditions. The only difference between the two
conditions was the manually triggered lane departure error in the L2
condition. No secondary task was present in any of the conditions. The
order of the conditions was counterbalanced among participants using
a balanced Latin square design.

4.4. Stimuli of the passive oddball task

During the three experimental conditions, participants were sub-
jected to a passive oddball task, which consisted of three types of
task-irrelevant auditory stimuli:

(1) Frequent distractors, with 450 presentations in each condition
(probability of presentation: 71.43%);

(2) infrequent distractors, with 90 presentations in each condition
(probability of presentation: 14.29%);

(3) novel environmental distractors, with 90 presentations in
each condition (probability of presentation: 14.29%).

The frequent and infrequent distractors consisted of two easily
istinguishable beep tones (pure 700 Hz and 300 Hz tones); their pre-
entation probability was counterbalanced across participants. For the
nvironmental distractors, 30 audibly distinct complex sounds (e.g., hu-
an laughter, helicopter, animal sounds) were selected from a database
rovided by the New York State Psychiatric Institute (Fabiani et al.,
996). We used the same set of stimuli as Scheer et al. (2016, 2018).
hese environmental distractors did not include sounds with strong
motional valence (e.g., sexual sounds). All stimuli featured a 10 ms
ise and fall, with a total duration of 336 ms for each stimulus. The
nter-stimulus interval was randomized, ranging from 1300 to 1700 ms.
nvironmental sounds were presented in a quasi-random order without
epetition and always followed at least one frequent distractor.

Each of the three experimental conditions lasted approximately
7 min. In every condition, participants experienced three consecutive
locks of sound presentation. Each block consisted of 210 auditory
timuli (150 frequent, 30 infrequent, and 30 novel environmental dis-
ractors). Each block lasted approximately five minutes and 30 s, during
hich auditory stimuli were presented. The three blocks were separated
y 20-second intervals, during which participants continued the driving
ask without sound presentations. The three blocks of auditory stimuli
ere identical; therefore, each of the 30 distinct novel environmental

ounds was played once in each block, resulting in three repetitions of
ach stimulus in each condition.

The auditory stimuli were presented in each of the three experimen-
al conditions. We informed participants that a presentation of sounds
ould begin once they started driving. They were instructed that these

ounds were not important for their task and they could ignore them.

.5. Procedure

Upon arrival, participants signed the informed consent form and
ompleted a demographic questionnaire. Following this, the EEG head-
et was set up, and participants were driven to the test track. Once
eated in the driver’s seat, they received safety training from the safety
river. Next, they experienced a practice drive. In this practice drive,
6

articipants manually drove one loop around the test track, with the s
safety driver guiding the desired trajectory and velocity of the vehicle.
This drive was not recorded and served solely as training. Subsequently,
participants watched an introductory video containing general infor-
mation about the experiment and its procedure. The three driving
conditions (manual, L2, and L3 driving) followed in a counterbalanced
order.

At the beginning of each of the three driving conditions, participants
viewed an introduction video. This video provided information about
the current level of automation of the vehicle (no automation, L2, or
L3 automation). The video outlined the system’s capabilities and the
driver’s tasks during the drive. After watching the video, participants
could ask further questions. Once they understood their task, they were
asked to proceed with the task. Task-irrelevant auditory probes were
played as soon as the vehicle began moving.

At the end of each of the three conditions, participants manually
drove back to the starting point of the test track and filled in the
NASA-TLX and KSS. Therefore, we obtained the self-reported data at
three measuring points, immediately at the end of each condition. After
completing the final condition, participants were driven back to the
facility. After they washed their hair, a short debriefing session was
provided. The experiment’s objectives were explained, and participants
could ask questions and provide feedback about the experiment. The
entire experiment lasted approximately 120–150 min, depending on the
individual differences in the EEG set-up time.

4.6. EEG signal acquisition and processing

The EEG was recorded using 32 channels placed according to the in-
ternational 10–20 system. We utilized the ActiCAP set (Brain Products
GmbH, Germany) with active shielded electrodes and a LiveAmp ampli-
fier. The impedance of each electrode was maintained below 25 kΩ us-
ng SuperVisc electrolyte gel (Easycap GmbH, Germany). The data were
nline referenced to the FCz electrode and digitized with a 1000 Hz
ampling rate using the Lab Streaming Layer framework (Kothe et al.,
019). The data were preprocessed in Matlab version R2022a, em-
loying EEGlab v2022.1 with the ERPlab v9.00 (Delorme and Makeig,
004), IClabel v1.4 (Pion-Tonachini et al., 2019), bemobil-pipeline
.9 (Klug et al., 2022), clean_rawdata v2.7, dipfit v4.3 (Delorme et al.,
011), xdfimport v1.18 (Kothe, 2012), and zapline-plus v1.2.1 (Klug
nd Kloosterman, 2022; de Cheveigné, 2020) plugins.

Data preprocessing followed the BeMoBil pipeline (Klug et al.,
022). We followed the recommendations that are provided by Klug
t al. (2022) and are available in the Matlab documentation. All of
he steps that required setting parameters and/or thresholds are doc-
mented in this section. The continuous EEG data were downsampled
o 500 Hz and band-pass filtered between 0.1 and 100 Hz. Power line
rtefacts were removed using the ZapLine Plus plugin (de Cheveigné,
020; Klug and Kloosterman, 2022). Channels with less than 𝑟 = .78
orrelation to their robust estimate in over 50% of the time were
nterpolated (on average, M = 5.13 channels, SD = 1.86). All channels
ere offline re-referenced to an average reference. The data were high-
ass filtered with a cut-off frequency of 1.25 Hz to perform adaptive
ixture independent component analysis (AMICA). Automatic rejection

f bad data portions was enabled, and AMICA was conducted with ten
terations. The spatial filter was then copied into the original dataset,
nd components were classified using IClabel. Components most likely
riginating from brain activity were retained.

After cleaning the raw data using the copied AMICA weights, we
pplied a second-order Butterworth filter and band-pass filtered the
ata between 0.1 and 30 Hz. Next, continuous artefact rejection was
erformed with a frequency range for thresholding between 20 and
0 Hz. The upper-frequency threshold was set to 10 dB with a 0.5 s
poch length. A minimum of four contiguous epochs was required to
abel the region as artifactual, with an additional 0.25 s neighbouring

ignals on each side.
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Fig. 2. The comparison of the mean score of the six dimensions of NASA-TLX and the overall score. Significant differences are marked with an asterisk (* p <.05, ** p <.01, ***
p <.001). The error bars represent 95% confidence intervals.
Finally, we extracted epochs from −200 to 800 ms relative to the
stimulus onset. Baseline correction was applied, and epochs containing
step-like activity were flagged as artifactual. We utilized a threshold of
50 μV in a 200 ms moving window width with a 10 ms moving window
step. On average, 286.29 epochs (SD = 238.27) were rejected. For the
final analysis, each dataset contained, on average, 1423.14 epochs (SD
= 262.84) across the three conditions. Consequently, 84.15% of the
total epochs (SD = 13.24%) were included in the data analysis.

4.7. ERP parametrization and statistical analysis

The preprocessed data were averaged for each channel and ex-
perimental condition. A difference wave (DW) was computed as the
difference between the ERP elicited by the environmental distractor
and the ERP elicited by the frequent distractor. We decided to compute
DWs because, in a raw ERP waveform, different cognitive processes are
superimposed on one another, and the P3a response might be overlaid
with other neural activity that is not specifically related to the detection
of the auditory stimulus. Subtracting the ERP response to standard
stimuli from the ERP response to oddball stimuli allowed us to isolate
the specific change in neural activity associated with detecting the
oddball (Luck, 2014). Other researchers using the same paradigm have
chosen the same approach (e.g., Scheer et al., 2016; Van der Heiden
et al., 2021; Wester et al., 2008; Kramer et al., 1995). The amplitudes of
the frequent and infrequent beep tones are not reported, as the auditory
P3a is generated by unexpected novel sounds.

For the statistical analysis, we focused on the frontal region. We
analysed the frontal patch consisting of the Fz, FC1, and FC2 electrodes.
We chose the frontal area as the P3a reflects frontal lobe activity related
to the perception of novel distractors (Polich, 2007). Moreover, it has
been shown that frontal P3a exhibit the largest P3a amplitudes (Scheer
et al., 2016). We used the patch of three neighbouring frontocentral
electrodes to improve the signal-to-noise ratio.

Statistical analysis was conducted using JASP 0.16.4, with the gen-
eral level of significance set to 0.05. For self-reported result compar-
ison, we employed repeated measures ANOVA. When sphericity was
violated, we applied the Greenhouse–Geisser correction (when 𝜖 < 0.75)
or the Huynh-Feldt correction (when 𝜖 > 0.75). Holm post-hoc tests
were utilized for pairwise comparisons. Effect sizes are reported using
𝜔2 (for rmANOVAs) and Cohen’s d (for post-hoc tests).

We used linear mixed-effects models to compare EEG results with
the maximum likelihood method for model fitting. Linear mixed-effects
models are a more robust choice in case of missing data than traditional
ANOVA models (Bagiella et al., 2000). Due to missing data points, lin-
ear mixed-effects models were chosen as a more appropriate alternative
to repeated-measures ANOVA in our design.

We employed the collapsed localizer method to quantify ERP com-
ponent amplitudes. This method provides an objective, data-driven
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way of identifying the time window when an ERP component is most
prominent and reduces the potential for bias or error in the selection of
the parameters (Luck, 2014; Luck and Gaspelin, 2017). A grand average
(GA) peak for the three conditions at the frontal patch was determined
at 354 ms post-stimulus. The mean amplitude was calculated between
329 and 374 ms post-stimulus (GA peak +/−25 ms). The model was
specified as:

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∼ 𝐿𝑒𝑣𝑒𝑙 + (1 ∣ 𝑆𝑢𝑏𝑗𝑒𝑐𝑡) (1)

where Amplitude is the mean P3a amplitude in the selected time win-
dow, Level is the fixed effect of the level of automation, and Subject
is the random effect of each test subject. To assess contrasts between
mean amplitudes, we computed estimated marginal means with Holm
𝑝-value adjustment for differences between L2 and manual driving and
between L3 and manual driving.

5. Results

5.1. Self-reported cognitive load

A repeated measures ANOVA with a Huynh-Feldt correction deter-
mined that the self-reported cognitive load, quantified as the mean
NASA-TLX score, differed between the three conditions (F (1.683,
48.807) = 10.097, p <.001, 𝜔2 = 0.108). Post hoc testing using
the Holm correction revealed that L2 driving was perceived as more
demanding than L3 driving (mean difference = 2.88, p <.001, d =
0.834), and manual driving was perceived as more demanding than L3
driving (mean difference = 3.508, p = .002, d = 0.699). There was no
difference between L2 and manual driving (mean difference = 0.467, p
= .501). In accordance with our hypotheses H1a and H1b, we observed
no difference in self-reported cognitive load between manual and L2
driving, and the self-reported cognitive load was significantly lower in
L3 driving than in manual driving.

To further understand the factors that influence the perceived cog-
nitive load in different levels of automation, we analysed the six
dimensions of NASA-TLX. Fig. 2 visualizes the mean score of each
dimension and the overall NASA-TLX score, and the results of multiple
comparisons between the three conditions using post-hoc tests with the
Holm correction.

The mean scores of mental demand (e.g. thinking, deciding, calcu-
lating, remembering, looking, searching) differed significantly between
the levels of automation (F (2, 58) = 7.159, p = .002, 𝜔2 = 0.085). Using
Holm post-hoc test revealed a significant difference between manual (M
= 6.767, SD = 4.732) and L3 driving (M = 3.800, SD = 3.800, mean
difference = 2.967, p = .010, d = 0.622); and between L2 (M = 7.400,
SD = 5.599) and L3 driving (mean difference = 3.600, p = .002, d =
0.755). There was no difference between manual and L2 driving (mean
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Fig. 3. Topographical map for various 50-ms intervals from 150 ms after stimulus onset to 500 ms after stimulus onset. The map displays the difference between environmental
and frequent auditory cues.
difference = 0.633, p = .535, d = 0.133). These results suggest that
mental demand was lower in L3 driving than in manual and L2 driving,
while no difference was observed between manual and L2 driving.

The mean scores of physical demand (e.g. pushing, pulling, turn-
ing, controlling, activating) differed significantly between the levels of
automation (F (2, 58) = 11.881, p <.001, 𝜔2 = 0.145). Using Holm post-
hoc test revealed a significant difference between manual (M = 6.333,
SD = 4.809) and L3 driving (M = 2.233, SD = 4.638, mean difference
= 4.100, p <.001, d = 1.039); and between L2 (M = 4.933, SD = 4.638)
and L3 driving (mean difference = 2.700, p = .005, d = 684). There was
no difference between manual and L2 driving (mean difference = 1.400,
p = .107, d = 0.355). These results suggest that L3 driving requires less
physical effort than manual and L2 driving. No difference was found
between manual and L2 driving in terms of physical demand.

The mean scores of temporal demand (how much time pressure
participants felt) did not differ significantly between the manual (M =
4.267, SD = 3.311), L2 (M = 4.367, SD = 3.908), and L3 (M = 2.900,
SD = 3.575) driving (F (2, 58) = 2.732, p = .073, 𝜔2 = 0.021).

The mean scores of performance (how satisfied were participants
with their performance) differed significantly between the levels of
automation (F (2, 58) = 6.782, p = .002, 𝜔2 = 0.094). Using Holm post-
hoc test revealed a significant difference between L2 (M = 5.467, SD
= 4.485) and L3 driving (M = 2.467, SD = 1.852, mean difference =
3.000, p = .002, d = .852). There was no difference between manual
(M = 4.200, SD = 3.690) and L2 driving (mean difference = 1.267, p
= .127, d = 0.360). There was no difference between manual and L3
driving (mean difference = 1.733, p = .077, d = 0.492). The score on
this subscale is reversed. Therefore, the results suggest that participants’
satisfaction with their performance was higher in L3 compared to L2
driving. No differences were found between manual and L2 driving or
manual and L3 driving in terms of satisfaction with one’s performance.

The mean scores of effort (how hard participants had to work to
accomplish their performance) differed significantly between the levels
of automation (F (1.565, 45.388) = 7.699, p = .003, 𝜔2 = 0.098). Using
Holm post-hoc test revealed a significant difference between manual (M
= 6.267, SD = 4.705) and L3 driving (M = 2.700, SD = 3.466, mean
difference = 3.567, p = .003, d = 0.727); and between L2 (M = 6.500,
SD = 6.174) and L3 driving (mean difference = 3.800, p = .003, d =
.774). There was no difference between manual and L2 driving (mean
difference = 0.233, p = .831, d = 0.048). These results suggest that L3
driving requires less effort than manual and L2 driving. No difference
was found between manual and L2 driving regarding perceived effort.

The mean scores of frustration (whether participants felt insecure,
discouraged, irritated, stressed and annoyed during their task) differed
8

significantly between the levels of automation (F (2, 58) = 3.669, p =
.0032, 𝜔2 = 0.039). Using Holm post-hoc test revealed a significant
difference between L2 (M = 6.667, SD = 5.585) and L3 driving (M =
3.933, SD = 4.975, mean difference = 2.733, p = .033, d = .559). There
was no difference between manual (M = 4.700, SD = 3.967) and L2
driving (mean difference = 1.967, p = .128, d = 0.402). There was no
difference between manual and L3 driving (mean difference = 0.767,
p = .464, d = 0.157). These results suggest that participants felt more
frustrated in L2 than L3 driving. However, there were no significant
differences between manual and L2 driving or manual and L3 driving
in terms of frustration levels.

Overall, mental and physical demands were significantly lower for
L3 driving compared to manual and L2 driving. No differences were
found in temporal demands among the three levels. Drivers evaluated
their performance to be worse during L2 driving than L3 driving, while
the effort was lower for L3 driving than for manual and L2 driving.
Frustration was lower in L3 driving than L2 driving, but no significant
differences were found between manual and the other two levels.

5.2. Mean p3a amplitud - attentional resource allocation

Fig. 3 provides a visualization of the scalp’s electrical activity
distribution in response to stimulus presentation. This topographical
map highlights the variance in neural activity achieved by subtracting
the response to frequent stimuli from the response to novel environ-
mental stimuli. Furthermore, subtracting the ERP responses improves
the signal-to-noise ratio and removes the superimposed neural activity,
which is not related to stimulus processing. The plot illustrates the
relative disparities in the activation triggered by novel environmental
stimuli across different conditions.

The figure visualizes the information-processing cascade associated
with stimulus detection, categorization, and evaluation, described in
the three-stage involuntary attention-switching framework. In the per-
ception stage, identified around 100–150 ms, the brain recognizes
the presence of the stimulus. However, at this stage, the difference
between frequently encountered and novel stimuli is negligible because
the brain is primarily involved in capturing the perceptual essence
of the stimuli, regardless of their familiarity. Subsequently, in the
categorization stage, evident around 250–400 ms after the introduc-
tion of stimuli, the brain engages in a cognitive evaluation of these
stimuli. At this point, the contrast between frequent and novel stimuli
becomes pronounced. The novel environmental sounds necessitate a
greater allocation of processing resources as compared to the frequently
encountered stimuli. Once the distracting stimuli are categorized as
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Fig. 4. Difference wave (environmental-frequent) ERPs in the three experimental conditions. Mean amplitudes in the yellow-highlighted area (329 and 379 ms) were submitted
for statistical comparisons (* p <.05, ** p <.01).
irrelevant, an attention switch occurs, and the difference between the
frequent and novel stimuli is minimal again.

Fig. 4 presents the difference waves in the time domain. The mean
amplitude between 329 and 379 ms on the frontal patch (Fz, FC1, FC2)
was M = 1.436 μV (SD = 1.243) for manual driving, M = 0.920 μV (SD
= 1.006) for L3 driving, and M = 1.046 μV (SD = 0.921) for L2 driving.
Utilizing a linear mixed model (BIC = 269.584, deviance = 247.140),
we observed a significant main effect of the level of automation (beta =
0.333, t = 2.757, p = .008). We identified a difference between L3 and
manual driving (M = 0.576, SE = 0.208, p = .011). Additionally, we
discovered a difference between L2 and manual driving (M = 0.422,
SE = 0.211, p = .045).

Our results do not support the H2a and H2b hypotheses. We an-
ticipated no significant difference between the mean P3a amplitude
in manual and L2 driving, suggesting a similar allocation of atten-
tional resources for processing environmental sounds. However, we
found a difference between manual and L2 driving. Furthermore, we
assumed that the P3a amplitude would increase in L3 compared to
manual driving, implying that more attentional resources are devoted
to processing environmental sounds. Contrary to our assumption, we
observed a significant decrease in amplitude in L3 compared to manual
driving. In summary, our results indicate that the greatest amount of
attentional resources for processing environmental sounds was utilized
during manual driving and reduced in both L2 and L3 driving.

6. Discussion

This study investigated the cognitive mechanisms underlying driver–
vehicle interactions. Our goal was to get a better understanding of
the variations in self-reported cognitive load and attentional resource
allocation among manual driving and SAE L2 and SAE L3 automated
driving. We conducted an empirical experiment with 30 drivers who
operated a prototype automated vehicle on a test track. Throughout
the different automation levels, drivers experienced a passive oddball
task and encountered three categories of task-irrelevant auditory cues:
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frequent beeps, infrequent beeps, and infrequent novel environmental
sounds. We analysed the amplitude of the P3a ERP elicited by the
environmental sounds, which served as an indicator of attentional re-
sources employed in processing these sounds. Additionally, we assessed
participants’ self-reported cognitive load after each driving session. In
this section, we discuss our findings concerning self-reported subjec-
tive cognitive load, the P3a amplitude as an objective indicator of
attentional resource allocation, the differences between the objective
and subjective measurements, discrepancies with previous studies,
implications of our findings, and the limitations and future research
directions.

6.1. Subjective cognitive load

To assess the perceived subjective cognitive load, we analysed the
total score of NASA-TLX obtained by averaging across all items. The
results show that drivers perceived L3 driving as the least demanding,
while no significant difference was observed between manual and L2
driving regarding self-reported cognitive load. Upon examining the
six factors of NASA-TLX (mental, physical, and temporal demand,
performance, effort, frustration), L3 driving required lower mental and
physical demand and less effort than manual and L2 driving. Interest-
ingly, there was no difference in self-reported physical demand between
manual and L2 driving, even though the actual physical demand was
higher in manual driving but comparable for L2 and L3 driving.

Drivers rated their performance more favourably in L3 than in L2
driving and experienced less frustration with the L3 system. The perfor-
mance factor asked participants how successful they were in performing
the task and how satisfied they were with their performance. The
frustration factor asked how irritated, stressed, and annoyed versus
content, relaxed, and complacent drivers felt during the task. We
interpret these results in a way suggesting that drivers perceived overall
lower demands in L3 driving. Manual and L2 driving were perceived as
somehow similar with regard to cognitive load.
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These findings are consistent with prior research of Stapel et al.
(2017, 2019). The authors compared objective and subjective men-
tal workload during manual and L2 driving in real traffic on Dutch
highways. Their findings suggest that automation-inexperienced drivers
perceived similar subjective workloads in manual and L2 driving. When
assessing our data, we observed a similar trend.

However, the findings presented in this study are inconsistent with
the findings of Kim et al. (2023) and Várhelyi et al. (2021). Várhelyi
et al. (2021) compared manual and L3 driving on a German highway.
The results showed no differences with regard to perceived mental
workload between the manual and L3 conditions. This is different from
the present study, as we observed a significant decrease in perceived
cognitive load during L3 driving. We assume that this difference is
due to the different environmental settings of the experiments. The
discrepancies between a simulator, test track, and real traffic are further
discussed in Section 6.3.

Moreover, Kim et al. (2023) conducted an experiment with L2 ve-
hicles in real traffic in the United Kingdom. They reported an increase
in perceived mental workload connected to the use of automation. The
authors interpret these findings through several factors. Primarily, they
point to the high mental demand required to monitor the automated
vehicle. However, they also note that drivers were required to develop
a new mental model to comprehend the automation status. Further,
the study identified high levels of drivers’ frustration in the automa-
tion mode and the increased risk perception associated with complex
real-world conditions. The authors suggest that the increased mental
workload may be drivers’ natural response to the tangible risks of real-
world driving, potentially leading to a greater cognitive load than that
experienced in simulated environments. It is important, however, to
mention the small sample size of the experiment (N = 8) and the fact
that all participants were members of the project team.

Another discussion point arises from the use of the overall score
of NASA-TLX. Even though calculating the perceived cognitive load
by averaging across the six dimensions of NASA-TLX is a common
practice in the field, some authors suggest that this approach is not
mathematically meaningful (Bolton et al., 2023). Therefore, we provide
both overall and per-dimension analysis of cognitive load to provide a
possible comparison with other studies.

Overall, we argue that our results regarding perceived cognitive
load are complimentary with the previous findings. We observed sim-
ilar trends as Stapel et al. (2017, 2019). Even though the results are
inconsistent with the results of Kim et al. (2023) and Várhelyi et al.
(2021), we believe that the different environmental settings is the
primary factor in the observed differences.

6.2. P3a amplitude and attentional resource allocation

The amplitude of the P3a ERP component can be considered an
objective measure of the attentional resources allocated towards pro-
cessing environmental auditory stimuli and can serve as a measure of
cognitive load (Kramer et al., 1995; Polich, 2007). Some studies also
suggest that the neuroelectric response to novel auditory stimuli can be
modulated by top-down attention allocation (Cahn and Polich, 2009).
In light of the literature, our initial hypotheses were that there would
be no observable difference between the P3a amplitude in manual and
L2 driving and that the P3a amplitude would be increased during L3
driving. However, our observations diverged from these expectations,
revealing the highest P3a amplitude during manual driving.

This outcome deviates from what has been reported in several other
studies (Wester et al., 2008; Scheer et al., 2016; Van der Heiden et al.,
2018, 2021). These studies report the highest P3a amplitude in station-
ary conditions where the vehicle was not moving, with a reduction in
manual driving relative to stationary conditions and a further decrease
in automated driving. The authors proposed that cognitive load was
highest when driving manually, with automated driving demanding
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less cognitive resources, and the least cognitive load present during the
stationary condition.

In our view, however, interpreting these results purely through the
lens of cognitive resource competition might be an oversimplification.
This interpretation is predicated on the idea of limited, finite process-
ing resources, with information competing for this limited pool. It is
important to note, however, that all of the studies mentioned earlier
deployed an experimental paradigm requiring relatively low cognitive
effort. This brings into question whether a floor effect could be observed
when the measure loses its sensitivity. We suggest that other factors
could be contributing to the modulation of the P3a amplitudes.

In the stationary condition, drivers were not performing a task.
When left in such situations for a longer period of time, they likely
felt bored. Boredom could explain why they allocated more resources
to the processing of the environmental sounds, as they could serve as
a distraction from the boring situation.

Moreover, the P3a amplitude was decreased in manual compared
to automated driving in the above-mentioned studies. However, the
simulated environment could explain this observation. As the simulator
is unable to fully reproduce a realistic driving experience (Groh et al.,
2019; Hock et al., 2018; Wynne et al., 2019; Carsten and Jamson,
2011), the findings might have limited relevance in real-world settings.
This matter is further discussed in Section 6.3.

Additionally, other studies have not considered the change in
drivers’ roles when interpreting the results. The changed role could
imply that the environmental sounds, which could be rather irrelevant
for the drivers of automated vehicles, become more relevant when
driving manually. The change in relevance could be because manual
driving requires integrating different perceptual information to create
a unified perception of the world (Spence and Soto-Faraco, 2020).
Environmental sounds are potentially important in manual driving,
as drivers must constantly update their perceptual-motor loop to re-
main calibrated to the vehicle and their steering task (Mole et al.,
2019). With increasing automation, drivers are expected to focus their
attention more inside the vehicle due to the growing use of tactile
displays, alerts, and warning signals inside vehicles (Spence and Soto-
Faraco, 2020); hence, the importance of environmental information
decreases. Therefore, we argue that cognitive goals could enhance the
bottom-up processing of environmental stimuli in manual driving. This
effect could be attenuated in semi-automated driving. However, further
investigation on this topic is necessary to draw conclusions about the
change in spatial attention allocation.

Finally, previous experience with automation can influence drivers’
experience (Lohani et al., 2021; Stapel et al., 2019). All the participants
in the present study were active drivers but had no previous experience
with automation. Therefore, manual driving was an easy task for them,
while automation was unusual. A novelty effect may influence our
results; drivers could have allocated less attentional resources to pro-
cess the environmental stimuli due to the excitement of experiencing
automated driving for the first time.

Overall, the changes in P3a amplitude in the present study were
different than we expected based on the literature review. We argue
that the discrepancy originates mainly in the different environmental
settings of the experiments (simulator in the previous studies vs real ve-
hicle in our study), the changing role of drivers in automated vehicles,
and the novelty effect due to our sample characteristics (automation-
inexperienced drivers). We explain this observation through the lens of
top-down attention control, which was omitted in the previous studies.

6.3. Discrepancies between simulators and realistic environments

One of the major points for discussion is the effect of environmental
settings on the results of studies in the field of driving research.
Many researchers report discrepancies in a simulator and real-world

findings in regards to the speed of driving (Zöller et al., 2019), eye
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fixations (Fors et al., 2013), heart rate (Johnson et al., 2011), or mental
workload (Mueller, 2015) (for a review, see Wynne et al., 2019).

Although technological progress allows conducting experiments in
highly immersive simulators, the realism of such experience remains
limited as simulators cannot completely replicate the real world. Par-
ticipants of simulator experiments remain aware of the safe nature
of the simulator environment, which modulates their risk perception,
and subsequently impacts their behaviour (Carsten and Jamson, 2011).
Moreover, the technological properties of the simulator modulate the
driving experience (Figalová et al., 2022). Sadeghian Borojeni et al.
(2018) suggests that real-world conditions for simulation, e.g., motion,
can clarify mixed findings on driver–vehicle interactions in automated
driving.

Although test tracks cannot replace real traffic conditions due to
the safe environment and reduced complexity, it allows researchers
to study driving in a more realistic setting. The results of this study
suggest that the P3a findings obtained on a test track differ from
those in a driving simulator. We argue that the environment has a
major impact on the phenomena studied in driving research. Chuang
et al. (2017) previously came to similar conclusions using EEG in a
laboratory and a driving simulator to understand the differences in
drivers’ behaviour. Subsequently, we recommend a critical approach
to findings originating in a driving simulator. Moreover, we stress the
importance of real-world testing.

6.4. Discrepancies between objective and subjective measures

The discrepancy between objective and subjective measures has
been previously described in the literature, for example, by Stapel
et al. (2019, 2017) or Large et al. (2017). These discrepancies, how-
ever, do not necessarily mean contradicting results. De Waard and
Brookhuis (1996) suggests that different approaches to measuring cog-
nitive load are sensitive to different components of cognitive load and
recommends combining measures from different categories (self-report,
performance-based, and physiological measures) to gain a comprehen-
sive understanding of cognitive load.

The current literature jointly reports the modulations of P3a am-
plitude to be an effect of cognitive load. However, these studies were
generally conducted in laboratory settings and targeted very specific
and well-defined problems. However, real-world driving is a complex
task in a complex environment. Therefore, interpreting the P3a ampli-
tude only through the lens of resource competition could be misleading.
As the results of Cahn and Polich (2009) suggest, top-down attention
control could be another factor modulating the measure. We argue that
other factors, such as novelty or boredom, could be of importance as
well.

The results of this experiment suggest that cognitive load might not
be the only factor influencing the P3a amplitude, which is currently
the explanation provided by the majority of literature. Therefore, we
believe that using P3a amplitude as a direct measurement of cognitive
load might omit other important factors. We propose that top-down
attention control is another important factor. Further studies must be
carried out to specify what exactly is reflected in the P3a amplitude.

6.5. Implications

Automation promises to increase traffic safety, efficiency, and the
convenience of travelling. Until fully autonomous vehicles are avail-
able, humans remain responsible for the operation of semi-autonomous
systems and, therefore, remain a crucial safety factor (Stanton and
Salmon, 2009; Bucsuhazy et al., 2020). The use of neuroscientific mea-
sures in driving research can help inform the design of user interfaces
that improve how drivers process the conveyed information (Glatz
et al., 2018), subsequently improving safety and user experience of
automated driving. The results presented in this paper have several im-
plications for human–computer interaction research and user interface
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design for future automated vehicles.
Our results suggest that drivers of L2 and L3 vehicles allocate fewer
attentional resources to process environmental information than when
driving manually, potentially hindering drivers’ situational awareness.
These findings stress the need to design interfaces that efficiently
convey information to drivers who might be distracted or out of the
loop.

L2 driving was perceived to be comparably demanding as man-
ual driving. This suggests that potential benefits of L2 systems in
terms of increased driving comfort may not be easily reaped — pre-
sumably especially when drivers are novices or driving durations are
shorter. Moreover, the effects of long-term exposure to automated driv-
ing should be addressed in future studies, because these implications
might differ for experienced drivers.

Furthermore, the present results highlight the importance of driver
monitoring systems that can assess drivers’ states in real time. Un-
derstanding drivers’ state can inform intelligent user interfaces, which
should dynamically adapt to drivers’ current needs. These interfaces
should manage drivers’ attention and task load, ensuring optimal user
interaction and engagement, subsequently improving the user experi-
ence.

The low cognitive demand experienced by drivers in higher levels
of automation could negatively impact traffic safety. As drivers might
be distracted, out of the loop, and not calibrated to the vehicle dy-
namics before the onset of a take-over request, regaining full manual
control could lead to safety-critical situations. Using collaboration be-
tween the driver and the vehicle allows to combine the advantages
of high sensor precision with superior human decision-making. Such
cooperation should be adaptive and based on the input from driver
monitoring systems in order to guide drivers successfully and provide
relevant, efficient and accepted support. The collaborative approach
could, therefore, improve user experience and safety of automated
driving.

The results of the present study point out the importance of real-
world testing. The human–computer interactions should be addressed
and evaluated in a naturalistic environment, even though the ex-
perimental control might be decreased. Natural interactions provide
invaluable insights necessary for a comprehensive understanding of
human–computer interactions.

6.6. Contribution

This study contributes to a better understanding of cognitive mech-
anisms that underlay driver–vehicle interactions. Our results bring
new evidence about the self-reported cognitive load and attentional
resource allocation among manual, SAE L2, and SAE L3 driving in a
realistic environment. To our best knowledge, comparing three levels
of automation using both objective and subjective measures in a re-
alistic environment has not been previously published. Our findings
highlight the need for further investigation of the factors influencing
the allocation of attentional resources during driving, including the
role of automation experience, experimental environment, and indi-
vidual differences. Moreover, our results underscore the importance
of considering both bottom-up and top-down attention control in P3a
experiments which use tasks inducing low to medium levels of cognitive
load. Future experiments can address this issue methodologically and
study the effect of various factors on the P3a amplitude.

Our results highlight several points that may be considered for
improving the design of automated driving systems, especially for L2
systems: 1. Drivers may not readily experience the benefits of par-
tial automation 2. Drivers’ situational awareness may be diminished
when using the automated system. These points may be considered
by non-technical means, such as management of expectations through
appropriate advertisement or drivers’ training and by technical means,
such as the design of driver–vehicle interfaces, warning systems, or

online driver monitoring systems (Manstetten et al., 2021).
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6.7. Limitations and future research

The present study suffers from several limitations. First, the study
was performed on a closed test track. Even though test tracks provide
a dynamic real-world environment which is controllable and safe, its
complexity remains low. We suggest testing a similar paradigm in real
traffic once the legislative and technological limitations are overcome.

Moreover, our data seems to have relatively low sensitivity, likely
originating from environmental noise. We recommend recruiting larger
sample sizes, using high-density EEG systems, and keeping the
impedance below 10 kΩ for EEG data collection in the wild.

Additionally, this study was relatively short in duration (17 min per
ach condition). Some aspects of system use facilitated by automation,
uch as the need for the physical operation of controls, may only
lay a role during long-term or repeated usage. We recommend con-
ucting longer drives and/or repeated measurement points to observe
he dynamics in the drivers’ experience. Moreover, longer periods of
riving would provide more data and could therefore improve the
ignal-to-noise ratio.

The study was not designed to investigate the role of experience
ith automation on perceived cognitive load and attentional resource
llocation. Nonetheless, some participants mentioned that the system’s
ovelty could have had an impact, which could change with long-term
xposure. Future studies should investigate this potential relationship
nd verify whether it exists. Moreover, it would be interesting to
ompare young drivers and older drivers. We also suggest address-
ng the spatial localization of the stimuli on the stimuli processing
nd addressing the crossmodal potential to improve the driver–vehicle
nteraction.

Future investigations could also add to the interpretation of overt
river attention by measuring driver gaze behaviour (Bieg et al., 2020)
ith an eye-tracking system in conjunction with attentional measures
ased on EEG. Additionally, it would be interesting to use eye tracking
or detecting how relevant environmental cues (e.g., bicycle ring, am-
ulance siren) prime drivers to pay more attention to relevant visual
cenes.

Finally, future studies should explore the effect of top-down at-
ention allocation on the processing of environmental stimuli. In the
resent study, we could not reliably distinguish the difference between
he effect of attention allocation based on cognitive goals and task
emands that would imply competing for resources. Moreover, we
ecommend addressing the tonic changes in alpha and theta frequency
ands to gain more insights into fatigue and underload processes in
uture studies.

. Conclusion

This study provides new empirical evidence about the cognitive
echanisms underlying driver–vehicle interactions in a realistic en-

ironment. We studied attentional resource allocation and subjective
ognitive load during manual, SAE L2, and SAE L3 driving. Our results
uggest that drivers perceive L3 driving as the least demanding, while
o substantial difference in self-reported subjective cognitive load is
bserved between manual and L2 driving. Moreover, we studied the
3a ERP component elicited by the passive auditory oddball task. The
mplitude of the P3a ERP component indicates the amount of cognitive
esources invested into processing the auditory stimuli. It can serve as
n objective indicator of cognitive load and attention allocation. We
ound diminished P3a amplitudes in both L2 and L3 driving compared
o manual driving. This may suggest that during automated driving,
rivers allocate fewer attentional resources to processing environmen-
al information. However, further empirical evidence is needed to
nderstand whether these differences can be attributed to top-down
ttention control leading to attention withdrawal or bottom-up com-
etition for resources induced by cognitive load. The effect of other
actors, such as experience and novelty, should also be addressed
n future studies. To ensure the safety, efficiency, and comfort of
uture AVs, it is crucial to have a comprehensive understanding of
12

ow drivers allocate their attentional resources when operating an
automated vehicle and the effects of automation on cognitive load. De-
spite its limitations, our study offers important insights into real-world
driver–vehicle interactions. It highlights the importance of managing
drivers’ attention and cognitive load with implications for enhancing
automation safety and the design of user interfaces.
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