Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Realisierung einer positiven User Experience mittels benutzerfreundlicher Ausgestaltung des Innenraums für automatisierte Fahrfunktionen

RUMBA

How drivers allocate their attentional resources when operating an automated and manual vehicle: An EEG experiment

M.Sc. Nikol Figalová & Dr. Hans-Joachim Bieg

Department of Clinical and Health Psychology, Ulm University, Germany nikol.figalova@uni-ulm.de Department CR/ADX1.1, Robert Bosch GmbH, Renningen, Germany Hans-Joachim.Bieg@de.bosch.com

Methods

- Partially automated vehicles (AVs) are becoming more present on the streets, but not all automated system have the same abilities
 - SAE¹ level 2 vehicle requires the driver to constantly monitor the system and be prepared to take over anytime
 - **SAE level 3** vehicle allows the driver to be involved in non-driving tasks (e.g. smartphone) and be prepared to take-over upon request
- Overreliance in the system abilities can potentially lead to safetycritical situations
- Understanding how drivers behave in vehicles on different level of automation helps to design warning systems and drivers training

Research question

Do drivers allocate their attentional resources differently when they drive manually and operate a level 2 and level 3 AV?

2 Theoretical background

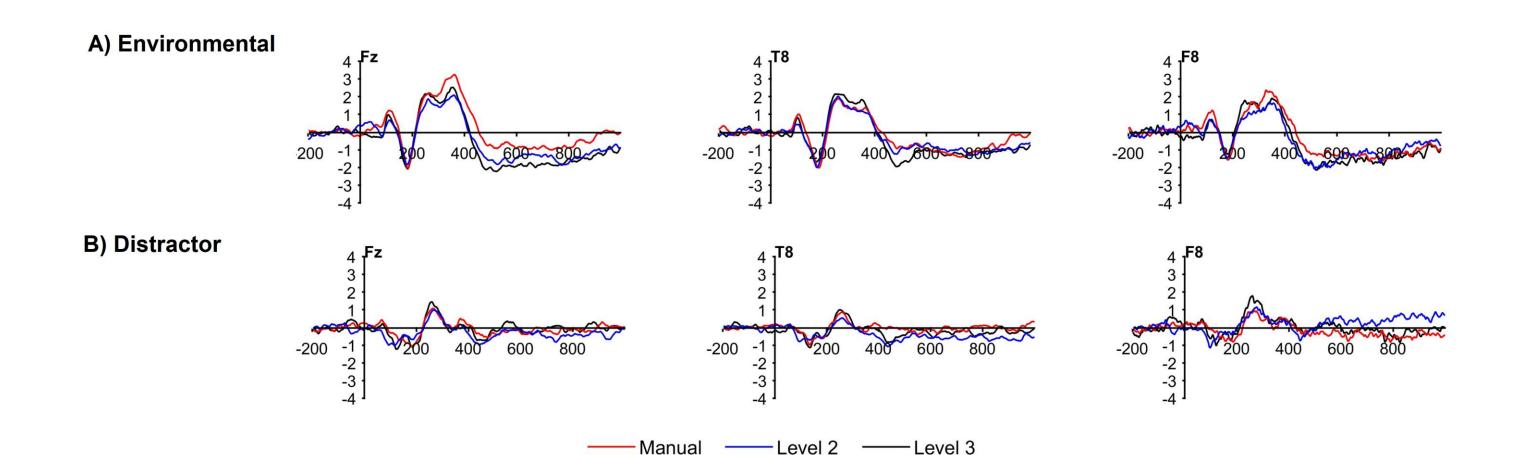
• Manual driving requires a lot of mental resources for monitoring of the environment, updating the perceptual

- Test-track experiment with 30 participants (age M = 42.6, SD = 14.0)
- Within-subject design (manual driving vs. level 2 vs. level 3 driving)
- System abilities explained using pre-recorded videos
- Brain activity measured using 32 channel EEG
- Auditory probes presented via headphones
 - Frequent standard (probability 70 %, 450 trials per condition);
 - infrequent distractor (probability 15 %, 90 trials per condition);
 - infrequent environmental sound (probability 15 %, 90 trials per condition).
- ERPs extracted from the EEG and averaged over the trials

motor loop, attuning gaze, and steering accordingly²

• Automated driving requires less mental resources as the vehicle takes-over (part of) the driving task

Assessing mental workload using event-related potentials (ERPs)


- Humans have only a finite amount of mental resources available³
- Mental workload is ratio between the task demands and the mental resources of the human operator⁴
- Only the free attentional resources are re-directed to the processing of the distracting stimuli (bottom-up)⁵
- Steering demands diminish the P3a, P3b, and RON components of the event-related potential of task-irrelevant sounds⁴
- Three stage distraction model:
 - 1. Automatic detection of unexpected task-irrelevant events;
 - 2. orienting attention towards the event;
 - 3. reorienting attention after temporary distraction.

3 | Hypotheses

• H1: Frontal N1, fronto-central P3a, P3b, and RON components have the smallest amplitude when drivers conduct manually.

5 | Preliminary results (for N = 10)

- Mean amplitude for the distractor sounds is lower compared to the environmental sound
- No difference in mean amplitude between L2, L3, and manual drive
- Hypotheses can not be accepted, likely due to the small sample size
- Analysis will be repeated with the complete dataset

• H2: Frontal N1, fronto-central P3a, P3b, and RON components have larger amplitude when drivers operate an SAE level 3 compared to SAE level 2 vehicle.

6 | Links & Acknowledgements

(Nikol Figalová)

projekt-rumba.de